MULTIPLICATIVE RENORMALIZATION AND GENERATING FUNCTIONS I.
نویسندگان
چکیده
منابع مشابه
Multiplicative Renormalization and Generating Functions I
Let μ be a probability measure on the real line with finite moments of all orders. Apply the Gram-Schmidt orthogonalization process to the system {1, x, x, . . . , xn, . . . } to get orthogonal polynomials Pn(x), n ≥ 0, which have leading coefficient 1 and satisfy (x − αn)Pn(x) = Pn+1(x) + ωnPn−1(x). In general it is almost impossible to use this process to compute the explicit form of these po...
متن کاملMultiplicative Renormalization and Generating Functions Ii
Let μ be a probability measure on the real line with finite moments of all orders. Suppose the linear span of polynomials is dense in L(μ). Then there exists a sequence {Pn}∞ n=0 of orthogonal polynomials with respect to μ such that Pn is a polynomial of degree n with leading coefficient 1 and the equality (x − αn)Pn(x) = Pn+1(x) + ωnPn−1(x) holds, where αn and ωn are SzegöJacobi parameters. In...
متن کاملRenormalization, Orthogonalization, and Generating Functions
Let μ be a probability measure on the real line with finite moments of all orders. Apply Gram-Schmidt orthogonalization process to the system {1, x, · · · , x, . . . } to get a sequence {Pn}∞n=0 of orthogonal polynomials with respect to μ. In this paper we explain a method of deriving a generating function ψ(t, x) for μ. The power series expansion of ψ(t, x) in t produces the explicit form of p...
متن کاملArithmetical Functions I: Multiplicative Functions
Truth be told, this definition is a bit embarrassing. It would mean that taking any function from calculus whose domain contains [1,+∞) and restricting it to positive integer values, we get an arithmetical function. For instance, e −3x cos2 x+(17 log(x+1)) is an arithmetical function according to this definition, although it is, at best, dubious whether this function holds any significance in n...
متن کاملOn composition of generating functions
In this work we study numbers and polynomials generated by two type of composition of generating functions and get their explicit formulae. Furthermore we state an improvementof the composita formulae's given in [6] and [3], using the new composita formula's we construct a variety of combinatorics identities. This study go alone to dene new family of generalized Bernoulli polynomials which incl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Taiwanese Journal of Mathematics
سال: 2003
ISSN: 1027-5487
DOI: 10.11650/twjm/1500407519